The GNSS Subsystem

Johan Hovold

Hovold Consulting AB

Open Source Summit Europe, Edinburgh
October 24, 2018

Introduction

Global Navigation Satellite System (GNSS)
GPS (US)
GLONASS (Russia)
BeiDou (China)
Galileo (EU)
Satellite-based radio navigation
e Position, velocity and time (PVT)

GNSS receivers currently managed in user space

Serial device bus (serdev) allows for a higher-level abstraction

e Power management
e Device detection

Outline

Background and theory

User interface

Driver interface

Currently supported devices

Limitations

Future work

GNSS history

e Ground-based radio navigation (1940s)
e Gee, LORAN, Decca
o Satellite-based radio navigation
e Transit (1960s)
e GPS, GLONASS (1970s)
e BeiDou (1990s)
Galileo (2000s)

e Politics

o Military purposes
o GPS Selective Availability (2000)
e Miniaturisation
e First single-chip receiver (2004)
e Smartphone with GPS (2007)
e 5.8 billion GNSS devices in 2017 (forcasted to 8 billion in 2020)

GNSS theory

o Satellites
e 24 4+ 6 satellites in three orbital planes
(Galileo example)
e Atomic clock
¢ Radio signals
e L band (1-2 GHz)
e Timing signal
e Navigation data (ephemeris, status, ...)

e Receivers

e Track satellites and estimate pseudo ranges
e Position, velocity and time (PVT)

GNSS receivers

Antenna, front-end, baseband signal
processing, application processing

Acquisition and tracking
PVT solution (2D, 3D)
Time to first fix (TTFF)

e Cold, warm and hot start
I/O interfaces (UART, ...)

e Reports (out)
e Control (in)

Power supplies and enable signals

Receiver 1/O interfaces

e UART

o 12C

e SPI

Remote processor messaging (rpmsg)
MMIO

e USB

SDIO

Receiver protocols

e Periodic reports + control

e Position, velocity and time
e Satellites in view

e NMEA 0183

o National Marine Electronics Association (1980s)
e De-facto standard

e Subset with vendor extensions

e Proprietary

e Much have been reverse-engineered

e Vendor protocols

e Garmin, SiRF Binary, UBX, ...
e Proprietary
¢ NMEA and vendor mode (runtime configurable)

NMEA 0183

$GPGGA ,092750.000,5321.6802,N,00630.3372,W,1,8,1.03,\
61.7,M,55.2,M, ,%*76

Checksummed (printable) ASCII sentences

e Time, position and fix-related data
e Position

o Velocity

e Satellites in view

e Time and date

o Incomplete PVT reports

Underspecified report cycles

No standard control commands (vendor extensions)

o Port settings
o Message rates

GNSS and Linux

Handled in user space

* gpsd
e Android location services

UART-interface only (TTY)

e Custom drivers and hacks for non-UART
Device description in user space

e Device and protocol detection hacks

Power management

e Modem control signals (DTR)
¢ GPIOs (gpiolib)

GTAO04 GPS power management

GTA04, OpenMoko
Wi2Wi SiRFstar-based GPS receiver

e onoff input, but no wakeup output signal
e Monitor data channel to determine power state

e Various proposals over the years
e Neil Brown, Nikolaus Schaller and others
Serial device bus (serdev)

o Finally possible to implement in kernel
o Specific wi2wi serdev driver with custom TTY interface

Need a GNSS-receiver framework

Problem statement

I/O interface abstraction

Device description and discovery (e.g. Device tree or ACPI)
e Power management

e Regulators, GPIOs, clocks...
e Data stream (GTAO04)

Vendor protocols...

Design decision

e Keep everything in user space?
o User-space drivers
e Some resources not available (e.g. regulators, clocks)
o Device descriptions in user space
¢ No I/O-interface abstraction
e System-suspend coordination

Design decision

e Keep everything in user space?
o User-space drivers
e Some resources not available (e.g. regulators, clocks)
o Device descriptions in user space
¢ No I/O-interface abstraction
e System-suspend coordination

e Handle everything in kernel?
e Proprietary protocols

e Legal issues

e Non-reverse engineered
String parsing
Device-dependent features and quirks
Hard to generalise protocols
Would require new user-space services
Floating-point math?

Design decision

o Keep everything in user space?
o User-space drivers
e Some resources not available (e.g. regulators, clocks)
o Device descriptions in user space
¢ No I/O-interface abstraction
e System-suspend coordination
e Handle everything in kernel?
e Proprietary protocols
e Legal issues
e Non-reverse engineered
e String parsing
e Device-dependent features and quirks
e Hard to generalise protocols
e Would require new user-space services
e Floating-point math?

o Keep protocol handling in user space

The GNSS subsystem

application
(gpsd)
. GNSS
cdev
e Raw character-device interface core (douiones0)
e Protocols handled in user space
core
e |/O-interface abstraction
e Device detection and description GNSS
driver :
e Power management driver
o Compatible with current user space serdev | 12¢ | SPI
e Can be extended with high-level interface later
o Merged in 4.19 .
GNSS receiver

User interface

e GNSS class device
e /sys/class/gnss/gnss0
e type sysfs attribute and GNSS_TYPE uevent variable

o "NMEA"
o "SiRF’
o "UBX’

e Character device

e /dev/gnss0O
e Pollable read, 4k buffer
e Synchronous write

Device-tree bindings

e Child node of 1/O interface node
o Generic properties
e compatible (required)

e Additional resources

&uartl A
gnss {
compatible = "wi2wi ,w2sg0084i";
vcc-supply = <&gnss_reg>;

sirf ,onoff -gpios = <&gpioO 16 GPIO_ACTIVE_HIGH>;
sirf ,wakeup-gpios = <&gpioO 17 GPIO_ACTIVE_HIGH>;
iy
I

Driver interface

o Allocation and registration
e Insertion of raw protocol data

o Callbacks for opening, closing and writing

Driver-interface functions

struct gnss_device;

struct gnss_device *gnss_allocate_device(...);
void gnss_put_device (...);

int gnss_register_device (...);

void gnss_deregister_device(...);

void gnss_set_drvdata(...);

void *gnss_get_drvdata(...);
int gnss_insert_raw(...);

e gnss_insert_raw() serialised by caller, any context

Driver-interface callbacks

struct gnss_operations {
int (*open) (struct gnss_device x);
void (*close) (struct gnss_device *);
int (*write_raw) (struct gnss_device *,
const unsigned char *, size_t);

};

e open() called on first open

e close() called on final close (or disconnect)
e write_raw()
e Synchronous, may sleep

Power management

e Handled on interface level (e.g. serdev device)
e Runtime power management

o Open serial port and enable receiver using RPM on open ()
o Allows user space to set always-on (power/control)

e System suspend
e Enable low-power mode or power off

Serial-library functions

struct gnss_serial;

struct gnss_serial #*gnss_serial_allocate(...

void gnss_serial_free(...);

int gnss_serial_register (...)
void gnss_serial_deregister(...);

void *gnss_serial_get_drvdata(...);

e Generic serial GNSS-driver implementation

e Callbacks for power management

Serial-library callbacks

enum gnss_serial_pm_state {
GNSS_SERIAL_OFF,
GNSS_SERIAL_ACTIVE,
GNSS_SERIAL_STANDBY,

};

struct gnss_serial_ops {
int (xset_power) (struct gnss_serial *gserial,
enum gnss_serial_pm_state state);

};

e ACTIVE - open or runtime active
e STANDBY - closed or system suspended

e OFF - driver unbound

Merged drivers

o SiRFstar receivers (sirf)

Main supply

onoff input

wakeup output

Not using serial library (wakeup NC)

o Not-connected wakeup not yet supported (e.g. GTA04)

e u-blox receivers (ubx)

e Main and backup supplies
o Serial library

Limitations

e Line-speed handling

e Coordinate protocol and interface control
e New GNSS ioctl()?
e Handle in kernel?

Hotplugging

USB-serial-connected receivers

Unique idVendor and idProduct?

o Kernel descriptions
o User-space descriptions

GNSS core supports hotplugging

But serdev does not (yet)

Modems

GNSS receiver integrated with modem

e Assisted GPS (A-GPS)
e Reduce time to first fix (e.g. almanac and time from network)

Modems managed in user space
e oFono telephony stack

Kernel interfaces
TTY (cdev)
Phonet (socket)
CAIF (socket)
CDC WDM (cdev)

e Example

e Control commands on one port (e.g. power management)
e GNSS reports on another (e.g. NMEA 0183)

ugnss

application | | application 2
. d F
e User-space GNSS drivers L . S) S
o Feed raw data to GNSS core GNSS cdev
core (/devignss0) cdev
o Accessible through common interface core (/devlugnsso)
o Needed while modems are managed in
GNSS
user space driver ugnss driver
e Can also be used for testing

Future work

Pulse per second (PPS)
Low-noise amplifiers (LNA)

e ugnss

Line-speed handling

High-level interface?

Further reading

GNSS Market Report Issue 5, European GNSS Agency
e https://www.gsa.europa.eu/system/files/reports/gnss_mr_2017.pdf

Navipedia, European Space Agency
e https://gssc.esa.int/navipedia/index.php/Main_Page
Towards A Better GPS Protocol, Eric S. Raymond
e http://www.catb.org/gpsd/replacing-nmea.html
Why GPSes suck, and what to do about it, Eric S. Raymond
e http://esr.ibiblio.org/7p=801

https://www.gsa.europa.eu/system/files/reports/gnss_mr_2017.pdf
https://gssc.esa.int/navipedia/index.php/Main_Page
http://www.catb.org/gpsd/replacing-nmea.html
http://esr.ibiblio.org/?p=801

Thanks!

johan@hovoldconsulting.com
johan@kernel.org

	The GNSS subsystem
	Introduction
	Outline
	GNSS history
	GNSS theory
	GNSS receivers
	Receiver I/O interfaces
	Receiver protocols
	NMEA 0183
	GNSS and Linux
	GTA04 GPS power management
	Problem statement
	Design decision
	The GNSS subsystem
	User interface
	Device-tree bindings
	Driver interface
	Driver-interface functions
	Driver-interface callbacks
	Power management
	Serial-library functions
	Serial-library callbacks
	Merged drivers
	Limitations
	Hotplugging
	Modems
	ugnss
	Future work
	Further reading
	Contact details

