
The GNSS Subsystem

Johan Hovold

Hovold Consulting AB

Open Source Summit Europe, Edinburgh
October 24, 2018

Introduction

• Global Navigation Satellite System (GNSS)
• GPS (US)
• GLONASS (Russia)
• BeiDou (China)
• Galileo (EU)

• Satellite-based radio navigation
• Position, velocity and time (PVT)

• GNSS receivers currently managed in user space

• Serial device bus (serdev) allows for a higher-level abstraction
• Power management
• Device detection

Outline

• Background and theory

• User interface

• Driver interface

• Currently supported devices

• Limitations

• Future work

GNSS history

• Ground-based radio navigation (1940s)
• Gee, LORAN, Decca

• Satellite-based radio navigation
• Transit (1960s)
• GPS, GLONASS (1970s)
• BeiDou (1990s)
• Galileo (2000s)

• Politics
• Military purposes
• GPS Selective Availability (2000)

• Miniaturisation
• First single-chip receiver (2004)
• Smartphone with GPS (2007)
• 5.8 billion GNSS devices in 2017 (forcasted to 8 billion in 2020)

GNSS theory

• Satellites
• 24 + 6 satellites in three orbital planes

(Galileo example)
• Atomic clock

• Radio signals
• L band (1–2 GHz)
• Timing signal
• Navigation data (ephemeris, status, ...)

• Receivers
• Track satellites and estimate pseudo ranges
• Position, velocity and time (PVT)

GNSS receivers

• Antenna, front-end, baseband signal
processing, application processing

• Acquisition and tracking

• PVT solution (2D, 3D)

• Time to first fix (TTFF)
• Cold, warm and hot start

• I/O interfaces (UART, ...)
• Reports (out)
• Control (in)

• Power supplies and enable signals

Receiver I/O interfaces

• UART

• I2C

• SPI

• Remote processor messaging (rpmsg)

• MMIO

• USB

• SDIO

• ...

Receiver protocols

• Periodic reports + control
• Position, velocity and time
• Satellites in view

• NMEA 0183
• National Marine Electronics Association (1980s)
• De-facto standard
• Subset with vendor extensions
• Proprietary
• Much have been reverse-engineered

• Vendor protocols
• Garmin, SiRF Binary, UBX, ...
• Proprietary
• NMEA and vendor mode (runtime configurable)

NMEA 0183

$GPGGA ,092750.000 ,5321.6802 ,N ,00630.3372 ,W,1,8,1.03,\

61.7,M,55.2,M,,*76

• Checksummed (printable) ASCII sentences
• Time, position and fix-related data
• Position
• Velocity
• Satellites in view
• Time and date

• Incomplete PVT reports

• Underspecified report cycles

• No standard control commands (vendor extensions)
• Port settings
• Message rates

GNSS and Linux

• Handled in user space
• gpsd
• Android location services

• UART-interface only (TTY)
• Custom drivers and hacks for non-UART

• Device description in user space
• Device and protocol detection hacks

• Power management
• Modem control signals (DTR)
• GPIOs (gpiolib)

GTA04 GPS power management

• GTA04, OpenMoko

• Wi2Wi SiRFstar-based GPS receiver
• onoff input, but no wakeup output signal
• Monitor data channel to determine power state

• Various proposals over the years
• Neil Brown, Nikolaus Schaller and others

• Serial device bus (serdev)
• Finally possible to implement in kernel
• Specific wi2wi serdev driver with custom TTY interface

• Need a GNSS-receiver framework

Problem statement

• I/O interface abstraction

• Device description and discovery (e.g. Device tree or ACPI)

• Power management
• Regulators, GPIOs, clocks...
• Data stream (GTA04)

• Vendor protocols...

Design decision

• Keep everything in user space?
• User-space drivers
• Some resources not available (e.g. regulators, clocks)
• Device descriptions in user space
• No I/O-interface abstraction
• System-suspend coordination

• Handle everything in kernel?
• Proprietary protocols

• Legal issues
• Non-reverse engineered

• String parsing
• Device-dependent features and quirks
• Hard to generalise protocols
• Would require new user-space services
• Floating-point math?

• Keep protocol handling in user space

Design decision

• Keep everything in user space?
• User-space drivers
• Some resources not available (e.g. regulators, clocks)
• Device descriptions in user space
• No I/O-interface abstraction
• System-suspend coordination

• Handle everything in kernel?
• Proprietary protocols

• Legal issues
• Non-reverse engineered

• String parsing
• Device-dependent features and quirks
• Hard to generalise protocols
• Would require new user-space services
• Floating-point math?

• Keep protocol handling in user space

Design decision

• Keep everything in user space?
• User-space drivers
• Some resources not available (e.g. regulators, clocks)
• Device descriptions in user space
• No I/O-interface abstraction
• System-suspend coordination

• Handle everything in kernel?
• Proprietary protocols

• Legal issues
• Non-reverse engineered

• String parsing
• Device-dependent features and quirks
• Hard to generalise protocols
• Would require new user-space services
• Floating-point math?

• Keep protocol handling in user space

The GNSS subsystem

• Raw character-device interface
• Protocols handled in user space

• I/O-interface abstraction

• Device detection and description

• Power management

• Compatible with current user space

• Can be extended with high-level interface later

• Merged in 4.19

User interface

• GNSS class device
• /sys/class/gnss/gnss0

• type sysfs attribute and GNSS TYPE uevent variable
• ”NMEA”
• ”SiRF”
• ”UBX”

• Character device
• /dev/gnss0
• Pollable read, 4k buffer
• Synchronous write

Device-tree bindings

• Child node of I/O interface node

• Generic properties
• compatible (required)

• Additional resources

&uart1 {

gnss {

compatible = "wi2wi ,w2sg0084i";

vcc -supply = <&gnss_reg >;

sirf ,onoff -gpios = <&gpio0 16 GPIO_ACTIVE_HIGH >;

sirf ,wakeup -gpios = <&gpio0 17 GPIO_ACTIVE_HIGH >;

};

};

Driver interface

• Allocation and registration

• Insertion of raw protocol data

• Callbacks for opening, closing and writing

Driver-interface functions

struct gnss_device;

struct gnss_device *gnss_allocate_device (...);

void gnss_put_device (...);

int gnss_register_device (...);

void gnss_deregister_device (...);

void gnss_set_drvdata (...);

void *gnss_get_drvdata (...);

int gnss_insert_raw (...);

• gnss insert raw() serialised by caller, any context

Driver-interface callbacks

struct gnss_operations {

int (*open)(struct gnss_device *);

void (*close)(struct gnss_device *);

int (* write_raw)(struct gnss_device *,

const unsigned char *, size_t);

};

• open() called on first open

• close() called on final close (or disconnect)

• write raw()

• Synchronous, may sleep

Power management

• Handled on interface level (e.g. serdev device)

• Runtime power management
• Open serial port and enable receiver using RPM on open()
• Allows user space to set always-on (power/control)

• System suspend
• Enable low-power mode or power off

Serial-library functions

struct gnss_serial;

struct gnss_serial *gnss_serial_allocate (...);

void gnss_serial_free (...);

int gnss_serial_register (...)

void gnss_serial_deregister (...);

void *gnss_serial_get_drvdata (...);

• Generic serial GNSS-driver implementation

• Callbacks for power management

Serial-library callbacks

enum gnss_serial_pm_state {

GNSS_SERIAL_OFF ,

GNSS_SERIAL_ACTIVE ,

GNSS_SERIAL_STANDBY ,

};

struct gnss_serial_ops {

int (* set_power)(struct gnss_serial *gserial ,

enum gnss_serial_pm_state state);

};

• ACTIVE - open or runtime active

• STANDBY - closed or system suspended

• OFF - driver unbound

Merged drivers

• SiRFstar receivers (sirf)
• Main supply
• onoff input
• wakeup output
• Not using serial library (wakeup NC)
• Not-connected wakeup not yet supported (e.g. GTA04)

• u-blox receivers (ubx)
• Main and backup supplies
• Serial library

Limitations

• Line-speed handling
• Coordinate protocol and interface control
• New GNSS ioctl()?
• Handle in kernel?

Hotplugging

• USB-serial-connected receivers

• Unique idVendor and idProduct?
• Kernel descriptions
• User-space descriptions

• GNSS core supports hotplugging

• But serdev does not (yet)

Modems

• GNSS receiver integrated with modem
• Assisted GPS (A-GPS)
• Reduce time to first fix (e.g. almanac and time from network)

• Modems managed in user space
• oFono telephony stack

• Kernel interfaces
• TTY (cdev)
• Phonet (socket)
• CAIF (socket)
• CDC WDM (cdev)

• Example
• Control commands on one port (e.g. power management)
• GNSS reports on another (e.g. NMEA 0183)

ugnss

• User-space GNSS drivers

• Feed raw data to GNSS core

• Accessible through common interface

• Needed while modems are managed in
user space

• Can also be used for testing

Future work

• Pulse per second (PPS)

• Low-noise amplifiers (LNA)

• ugnss

• Line-speed handling

• High-level interface?

Further reading

• GNSS Market Report Issue 5, European GNSS Agency
• https://www.gsa.europa.eu/system/files/reports/gnss_mr_2017.pdf

• Navipedia, European Space Agency
• https://gssc.esa.int/navipedia/index.php/Main_Page

• Towards A Better GPS Protocol, Eric S. Raymond
• http://www.catb.org/gpsd/replacing-nmea.html

• Why GPSes suck, and what to do about it, Eric S. Raymond
• http://esr.ibiblio.org/?p=801

https://www.gsa.europa.eu/system/files/reports/gnss_mr_2017.pdf
https://gssc.esa.int/navipedia/index.php/Main_Page
http://www.catb.org/gpsd/replacing-nmea.html
http://esr.ibiblio.org/?p=801

Thanks!

johan@hovoldconsulting.com
johan@kernel.org

	The GNSS subsystem
	Introduction
	Outline
	GNSS history
	GNSS theory
	GNSS receivers
	Receiver I/O interfaces
	Receiver protocols
	NMEA 0183
	GNSS and Linux
	GTA04 GPS power management
	Problem statement
	Design decision
	The GNSS subsystem
	User interface
	Device-tree bindings
	Driver interface
	Driver-interface functions
	Driver-interface callbacks
	Power management
	Serial-library functions
	Serial-library callbacks
	Merged drivers
	Limitations
	Hotplugging
	Modems
	ugnss
	Future work
	Further reading
	Contact details

