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Introduction

Global Navigation Satellite System (GNSS)
GPS (US)
GLONASS (Russia)
BeiDou (China)
Galileo (EU)
Satellite-based radio navigation
e Position, velocity and time (PVT)

GNSS receivers currently managed in user space

Serial device bus (serdev) allows for a higher-level abstraction

e Power management
e Device detection



Outline

Background and theory

User interface

Driver interface

Currently supported devices

Limitations

Future work



GNSS history

e Ground-based radio navigation (1940s)
e Gee, LORAN, Decca
o Satellite-based radio navigation
e Transit (1960s)
e GPS, GLONASS (1970s)
e BeiDou (1990s)
Galileo (2000s)

e Politics

o Military purposes
o GPS Selective Availability (2000)
e Miniaturisation
e First single-chip receiver (2004)
e Smartphone with GPS (2007)
e 5.8 billion GNSS devices in 2017 (forcasted to 8 billion in 2020)



GNSS theory

o Satellites
e 24 4+ 6 satellites in three orbital planes
(Galileo example)
e Atomic clock
¢ Radio signals
e L band (1-2 GHz)
e Timing signal
e Navigation data (ephemeris, status, ...)

e Receivers

e Track satellites and estimate pseudo ranges
e Position, velocity and time (PVT)



GNSS receivers

Antenna, front-end, baseband signal
processing, application processing

Acquisition and tracking
PVT solution (2D, 3D)
Time to first fix (TTFF)

e Cold, warm and hot start
I/O interfaces (UART, ...)

e Reports (out)
e Control (in)

Power supplies and enable signals



Receiver 1/O interfaces

e UART

o 12C

e SPI

Remote processor messaging (rpmsg)
MMIO

e USB

SDIO



Receiver protocols

e Periodic reports + control

e Position, velocity and time
e Satellites in view

e NMEA 0183

o National Marine Electronics Association (1980s)
e De-facto standard

e Subset with vendor extensions

e Proprietary

e Much have been reverse-engineered

e Vendor protocols

e Garmin, SiRF Binary, UBX, ...
e Proprietary
¢ NMEA and vendor mode (runtime configurable)



NMEA 0183

$GPGGA ,092750.000,5321.6802,N,00630.3372,W,1,8,1.03,\
61.7,M,55.2,M, ,%*76

Checksummed (printable) ASCII sentences

e Time, position and fix-related data
e Position

o Velocity

e Satellites in view

e Time and date

o Incomplete PVT reports

Underspecified report cycles

No standard control commands (vendor extensions)

o Port settings
o Message rates



GNSS and Linux

Handled in user space

* gpsd
e Android location services

UART-interface only (TTY)

e Custom drivers and hacks for non-UART
Device description in user space

e Device and protocol detection hacks

Power management

e Modem control signals (DTR)
¢ GPIOs (gpiolib)



GTAO04 GPS power management

GTA04, OpenMoko
Wi2Wi SiRFstar-based GPS receiver

e onoff input, but no wakeup output signal
e Monitor data channel to determine power state

e Various proposals over the years
e Neil Brown, Nikolaus Schaller and others
Serial device bus (serdev)

o Finally possible to implement in kernel
o Specific wi2wi serdev driver with custom TTY interface

Need a GNSS-receiver framework



Problem statement

I/O interface abstraction

Device description and discovery (e.g. Device tree or ACPI)
e Power management

e Regulators, GPIOs, clocks...
e Data stream (GTAO04)

Vendor protocols...



Design decision

e Keep everything in user space?
o User-space drivers
e Some resources not available (e.g. regulators, clocks)
o Device descriptions in user space
¢ No I/O-interface abstraction
e System-suspend coordination
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Design decision

o Keep everything in user space?
o User-space drivers
e Some resources not available (e.g. regulators, clocks)
o Device descriptions in user space
¢ No I/O-interface abstraction
e System-suspend coordination
e Handle everything in kernel?
e Proprietary protocols
e Legal issues
e Non-reverse engineered
e String parsing
e Device-dependent features and quirks
e Hard to generalise protocols
e Would require new user-space services
e Floating-point math?

o Keep protocol handling in user space



The GNSS subsystem

application
(gpsd)
. GNSS
cdev
e Raw character-device interface core (douiones0)
e Protocols handled in user space
core
e |/O-interface abstraction
e Device detection and description GNSS
driver :
e Power management driver
o Compatible with current user space serdev | 12¢ | SPI
e Can be extended with high-level interface later
o Merged in 4.19 .
GNSS receiver




User interface

e GNSS class device
e /sys/class/gnss/gnss0
e type sysfs attribute and GNSS_TYPE uevent variable

o "NMEA"
o "SiRF’
o "UBX’

e Character device

e /dev/gnss0O
e Pollable read, 4k buffer
e Synchronous write



Device-tree bindings

e Child node of 1/O interface node
o Generic properties
e compatible (required)

e Additional resources

&uartl A
gnss {
compatible = "wi2wi ,w2sg0084i";
vcc-supply = <&gnss_reg>;

sirf ,onoff -gpios = <&gpioO 16 GPIO_ACTIVE_HIGH>;
sirf ,wakeup-gpios = <&gpioO 17 GPIO_ACTIVE_HIGH>;
iy
I



Driver interface

o Allocation and registration
e Insertion of raw protocol data

o Callbacks for opening, closing and writing



Driver-interface functions

struct gnss_device;

struct gnss_device *gnss_allocate_device(...);
void gnss_put_device (...);

int gnss_register_device (...);

void gnss_deregister_device(...);

void gnss_set_drvdata(...);

void *gnss_get_drvdata(...);
int gnss_insert_raw(...);

e gnss_insert_raw() serialised by caller, any context



Driver-interface callbacks

struct gnss_operations {
int (*open) (struct gnss_device x);
void (*close) (struct gnss_device *);
int (*write_raw) (struct gnss_device *,
const unsigned char *, size_t);

};

e open() called on first open

e close() called on final close (or disconnect)
e write_raw()
e Synchronous, may sleep



Power management

e Handled on interface level (e.g. serdev device)
e Runtime power management

o Open serial port and enable receiver using RPM on open ()
o Allows user space to set always-on (power/control)

e System suspend
e Enable low-power mode or power off



Serial-library functions

struct gnss_serial;

struct gnss_serial #*gnss_serial_allocate(...

void gnss_serial_free(...);

int gnss_serial_register (...)
void gnss_serial_deregister(...);

void *gnss_serial_get_drvdata(...);

e Generic serial GNSS-driver implementation

e Callbacks for power management



Serial-library callbacks

enum gnss_serial_pm_state {
GNSS_SERIAL_OFF,
GNSS_SERIAL_ACTIVE,
GNSS_SERIAL_STANDBY,

};

struct gnss_serial_ops {
int (xset_power) (struct gnss_serial *gserial,
enum gnss_serial_pm_state state);

};

e ACTIVE - open or runtime active
e STANDBY - closed or system suspended

e OFF - driver unbound



Merged drivers

o SiRFstar receivers (sirf)

Main supply

onoff input

wakeup output

Not using serial library (wakeup NC)

o Not-connected wakeup not yet supported (e.g. GTA04)

e u-blox receivers (ubx)

e Main and backup supplies
o Serial library



Limitations

e Line-speed handling

e Coordinate protocol and interface control
e New GNSS ioctl()?
e Handle in kernel?



Hotplugging

USB-serial-connected receivers

Unique idVendor and idProduct?

o Kernel descriptions
o User-space descriptions

GNSS core supports hotplugging

But serdev does not (yet)



Modems

GNSS receiver integrated with modem

e Assisted GPS (A-GPS)
e Reduce time to first fix (e.g. almanac and time from network)

Modems managed in user space
e oFono telephony stack

Kernel interfaces
TTY (cdev)
Phonet (socket)
CAIF (socket)
CDC WDM (cdev)

e Example

e Control commands on one port (e.g. power management)
e GNSS reports on another (e.g. NMEA 0183)



ugnss

application | | application 2
. d F
e User-space GNSS drivers L . S ) S
o Feed raw data to GNSS core GNSS cdev
core (/devignss0) cdev
o Accessible through common interface core (/devlugnsso)
o Needed while modems are managed in
GNSS
user space driver ugnss driver
e Can also be used for testing



Future work

Pulse per second (PPS)
Low-noise amplifiers (LNA)

e ugnss

Line-speed handling

High-level interface?



Further reading

GNSS Market Report Issue 5, European GNSS Agency
e https://www.gsa.europa.eu/system/files/reports/gnss_mr_2017.pdf

Navipedia, European Space Agency
e https://gssc.esa.int/navipedia/index.php/Main_Page
Towards A Better GPS Protocol, Eric S. Raymond
e http://www.catb.org/gpsd/replacing-nmea.html
Why GPSes suck, and what to do about it, Eric S. Raymond
e http://esr.ibiblio.org/7p=801


https://www.gsa.europa.eu/system/files/reports/gnss_mr_2017.pdf
https://gssc.esa.int/navipedia/index.php/Main_Page
http://www.catb.org/gpsd/replacing-nmea.html
http://esr.ibiblio.org/?p=801

Thanks!

johan@hovoldconsulting.com
johan@kernel.org
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